
Concept Learning

nLearning from examples
nGeneral-to specific ordering of hypotheses
nVersion spaces and candidate elimination
algorithm
nInductive bias

What’s Concept Learning?
n infer the general definition of some

concept, given examples labeled as
members or nonmembers of the
concept.

n example: learn the category of “car” or
“bird”

n concept is often formulated as boolean-
valued function

n can be formulated as a problem of
searching a hypothesis space

Training Examples for Concept
Enjoy Sport

Yes
Yes
No
Yes

Same
Same
Change
Change

Warm
Warm
Warm
Cool

Strong
Strong
Strong
Strong

Normal
High
High
High

Warm
Warm
Cold
Warm

Sunny
Sunny
Rainy
Sunny

Enjoy
Sport

Fore-
cast

WaterWindHumidTempSky

Concept: ”days on which my friend Tom enjoys his favourite
water sports”

Task: predict the value of ”Enjoy Sport” for an arbitrary day
based on the values of the other attributes

attributes

example

Representing Hypothesis

n Hypothesis h is described as a conjunction of
constraints on attributes

n Each constraint can be:
n A specific value : e.g. Water=Warm
n A don’t care value : e.g. Water=?
n No value allowed (null hypothesis): e.g. Water=Ø

n Example: hypothesis h
Sky Temp Humid Wind Water Forecast

< Sunny ? ? Strong ? Same >

Prototypical Concept Learning
Task

Given:
n Instance Space X : Possible days decribed by the

attributes Sky, Temp, Humidity, Wind, Water, Forecast
n Target function c: EnjoySport X → {0,1}
n Hypothese Space H: conjunction of literals e.g.

< Sunny ? ? Strong ? Same >
n Training examples D : positive and negative examples of

the target function: <x1,c(x1)>,… , <xn,c(xn)>
Determine:
n A hypothesis h in H such that h(x)=c(x) for all x in D.

Inductive Learning Hypothesis
n Any hypothesis found to approximate the

target function well over the training
examples, will also approximate the target
function well over the unobserved examples.

find the hypothesis that best fits the
training data

Number of Instances,
Concepts, Hypotheses

n Sky: Sunny, Cloudy, Rainy
n AirTemp: Warm, Cold
n Humidity: Normal, High
n Wind: Strong, Weak
n Water: Warm, Cold
n Forecast: Same, Change
#distinct instances : 3*2*2*2*2*2 = 96
#distinct concepts : 296

#syntactically distinct hypotheses : 5*4*4*4*4*4=5120
#semantically distinct hypotheses : 1+4*3*3*3*3*3=973

organize the search to take advantage of the structure of the
hypothesis space to improve running time

General to Specific Ordering
n Consider two hypotheses:

n h1=< Sunny,?,?,Strong,?,?>
n h2=< Sunny,?,?,?,?,?>

n Set of instances covered by h1 and h2:
h2 imposes fewer constraints than h1 and therefore classifies more
instances x as positive h(x)=1. h2 is a more general concept.

Definition: Let hj and hk be boolean-valued functions defined over X.
Then hj is more general than or equal to hk (written hj ≥ hk) if and
only if

∀x ∈ X : [(hk(x) = 1) → (hj(x) = 1)]
n The relation ≥ imposes a partial order over the hypothesis space H

that is utilized in many concept learning methods.

Instance, Hypotheses and
”more general”

x1=< Sunny,Warm,High,Strong,Cool,Same>

x2=< Sunny,Warm,High,Light,Warm,Same>

h1=< Sunny,?,?,Strong,?,?>

h2=< Sunny,?,?,?,?,?>

h3=< Sunny,?,?,?,Cool,?>

Instances

x2

x1

Hypotheses

h2

h3
h1

h2 ≥ h1
h2 ≥ h3

specific

general

h1 is a minimal specialization of h2

h2 is a minimal generalization of h1

Find-S Algorithm

1. Initialize h to the most specific hypothesis in H
2. For each positive training instance x

n For each attribute constraint ai in h
If the constraint ai in h is satisfied by x
then do nothing
else replace ai in h by the next more
general constraint that is satisfied by x

3. Output hypothesis h minimal generalization
to cover x

Constraint Generalization

Ø (no value)

Sunny Cloudy Rainy

Arrtibute: Sky

?(any value)

Illustration of Find-S

Instances Hypotheses

specific

general

h0

h0=< Ø , Ø , Ø , Ø , Ø , Ø ,>

h1

x1=<Sunny,Warm,Normal,Strong,Warm,Same>+

x1

h1=< Sunny,Warm,Normal,
Strong,Warm,Same>

x3=<Rainy,Cold,High,Strong,Warm,Change> -

x3

h2,3

x2=<Sunny,Warm,High,Strong,Warm,Same>+

x2

h2,3=< Sunny,Warm,?,
Strong,Warm,Same>

h4

x4=<Sunny,Warm,High,Strong,Cool,Change> +

x4

h4=< Sunny,Warm,?,
Strong,?,?>

Properties of Find-S
n Hypothesis space described by

conjunctions of attributes
n Find-S will output the most specific

hypothesis within H that is consistent
with the positve training examples

n The output hypothesis will also be
consistent with the negative examples,
provided the target concept is
contained in H. (why?)

+

-

+
+

+ +

-
-

-

-

-

-

g

s h is consistent
with D, then
h>s;

h

Why Find-S Consistent?

Complaints about Find-S
n Can’t tell if the learner has converged to the target

concept, in the sense that it is unable to determine
whether it has found the only hypothesis consistent
with the training examples. (more examples get
better approximation)

n Can’t tell when training data is inconsistent, as it
ignores negative training examples. (prefer to detect
and tolerate errors or noise)

n Why prefer the most specific hypothesis? Why not
the most general, or some other hypothesis? (more
specific less likely coincident)

n What if there are multiple maximally specific
hypothesis? (all of them are equally likely)

Version Spaces
n A hypothesis h is consistent with a set of

training examples D of target concept if and
only if h(x)=c(x) for each training example
<x,c(x)> in D.

Consistent(h,D) := ∀<x,c(x)>∈D h(x)=c(x)
n The version space, VSH,D , with respect to

hypothesis space H, and training set D, is the
subset of hypotheses from H consistent with
all training examples:

VSH,D = {h ∈ H | Consistent(h,D) }

List-Then Eliminate Algorithm
1. VersionSpace ← a list containing every

hypothesis in H
2. For each training example <x,c(x)>

remove from VersionSpace any
hypothesis that is inconsistent with the
training example h(x) ≠ c(x)

3. Output the list of hypotheses in
VersionSpace

inefficient as it does not utilize the structure
of the hypothesis space.

Example Version Space

{<Sunny,Warm,?,Strong,?,?>}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, }G:

<Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?,?> <?,Warm,?,Strong,?,?>

x1 = <Sunny Warm Normal Strong Warm Same> +
x2 = <Sunny Warm High Strong Warm Same> +
x3 = <Rainy Cold High Strong Warm Change> -
x4 = <Sunny Warm High Strong Cool Change> +

Representing Version Spaces

n The general boundary, G, of version space VSH,D
is the set of maximally general hypotheses.

n The specific boundary, S, of version space VSH,D
is the set of maximally specific hypotheses.

n Every hypothesis of the version space lies between
these boundaries

VSH,D = {h ∈ H| (∃ s ∈ S) (∃ g ∈ G) (g ≥ h ≥ s)
where x ≥ y means x is more general or equal than y

Boundaries of Version Space

+
+

+ +

-

-

-

+

- -
-

-

g

s
Consistent(s’,D)
= FALSE

s’

Consistent(g’,D)
=FALSE

g’
h is consistent
with D

h

Candidate Elimination
Algorithm

G ← maximally general hypotheses in H
S ← maximally specific hypotheses in H
For each training example d=<x,c(x)>

modify G and S so that G and S are consistent
with d

Positive Example:
g(d)=s(d)=0

+

-

+
+

+ +

-
-

-

-

-

+-

g

s •remove g

•remove s

Possitive Example:
g(d)=1 and s(d)=0

+

-

+
+

+ +
+

-
-

-

-

-

-

g

s •generalize s

Possitive Example:
g(d)=s(d)=1

+

-

+
+

+

+
+

-
-

-

-

-

-

g

s

Negative Example:
g(d-)=s (d-)=1

+

-

+
+

+

-
+

-
-

-

-

-

-

g

s •remove s

•remove g

Negative Example:
g(d-)=1 and s(d-)=0

+

-

+
+

+ +

-

-

-

-

-

-

-

g

s •specialize g

Negative Example:
g(d-)=s(d-)=0

+

-

+
+

+ +

-
-

-

-

-

--

g

s

Candidate Elimination
Algorithm

G ← maximally general hypotheses in H
S ← maximally specific hypotheses in H
For each training example d=<x,c(x)>
If d is a positive example
Remove from G any hypothesis that is inconsistent with d
For each hypothesis s in S that is not consistent with d
n remove s from S.
n Add to S all minimal generalizations h of s such that

n h consistent with d
n Some member of G is more general than h

n Remove from S any hypothesis that is more general than
another hypothesis in S

Candidate Elimination
Algorithm

If d is a negative example

Remove from S any hypothesis that is inconsistent with d
For each hypothesis g in G that is not consistent with d
n remove g from G.
n Add to G all minimal specializations h of g such that

n h consistent with d
n Some member of S is more specific than h

n Remove from G any hypothesis that is less general than
another hypothesis in G

Example Candidate Elimination

{<∅, ∅, ∅, ∅, ∅, ∅ >}S:

{<?, ?, ?, ?, ?, ?>}G:

{< Sunny Warm Normal Strong Warm Same >}S:

{<?, ?, ?, ?, ?, ?>}G:

{< Sunny Warm ? Strong Warm Same >}S:

{<?, ?, ?, ?, ?, ?>}G:

x1 = <Sunny Warm Normal Strong Warm Same> +

x2 = <Sunny Warm High Strong Warm Same> +

Example Candidate Elimination

{< Sunny Warm ? Strong Warm Same >}S:

{<?, ?, ?, ?, ?, ?>}G:

{< Sunny Warm ? Strong Warm Same >}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, <?,?,?,?,?,Same>}G:

{< Sunny Warm ? Strong ? ? >}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?> }G:

x3 = <Rainy Cold High Strong Warm Change> -

x4 = <Sunny Warm High Strong Cool Change> +

Remarks on Version Space
and Candidate-Elimination
n converge to target concept when

n no error in training examples
n target concept is in H

n converge to an empty version space when
n inconsistency in training data
n target concept cannot be described by hypothesis

representation

n what should be the next training example?
n how to classify new instances?

Classification of New Data

{<Sunny,Warm,?,Strong,?,?>}S:

{<Sunny,?,?,?,?,?>, <?,Warm,?,?,?>, }G:

<Sunny,?,?,Strong,?,?> <Sunny,Warm,?,?,?,?> <?,Warm,?,Strong,?,?>

x5 = <Sunny Warm Normal Strong Cool Change>
x6 = <Rainy Cold Normal Light Warm Same>
x7 = <Sunny Warm Normal Light Warm Same>
x8 = <Sunny Cold Normal Strong Warm Same>

+ 6/0
- 0/6
? 3/3
? 2/4

Inductive Leap
+ <Sunny Warm Normal Strong Cool Change>
+ <Sunny Warm Normal Light Warm Same>

+ <Sunny Warm Normal Strong Warm Same>

• How can we justify to classify the new example as

Bias: We assume that the hypothesis space H contains
the target concept c. In other words that c can be
described by a conjunction of attribute constraints.

S : <Sunny Warm Normal ? ? ?>

Biased Hypothesis Space
n Our hypothesis space is unable to represent a

simple disjunctive target concept :
(Sky=Sunny) v (Sky=Cloudy)

x1 = <Sunny Warm Normal Strong Cool Change> +
x2 = <Cloudy Warm Normal Strong Cool Change> +

S : { <?, Warm, Normal, Strong, Cool, Change> }

x3 = <Rainy Warm Normal Light Warm Same> -

S : {}

problem of
expressibility

Unbiased Learner

n Idea: Choose H that expresses every teachable
concept, that means H is the set of all possible
subsets of X called the power set P(X)

n |X|=96, |P(X)|=296 ~ 1028 distinct concepts
n H = disjunctions, conjunctions, negations

n e.g. <Sunny Warm Normal ? ? ?> v <? ? ? ? ? Change>

n H surely contains the target concept.

Unbiased Learner

What are S and G in this case?

Assume positive examples (x1, x2, x3) and
negative examples (x4, x5)

S : { (x1 v x2 v x3) } G : { ¬ (x4 v x5) }
The only examples that are classified are the training
examples themselves. In other words in order to learn
the target concept one would have to present every single
instance in X as a training example.

Each unobserved instance will be classified positive by
precisely half the hypothesis in VS and negative by the
other half. problem of generalizability

Futility of Bias-Free Learning
n A learner that makes no prior assumptions

regarding the identity of the target concept
has no rational basis for classifying any
unseen instances.

No Free Lunch!

Inductive Bias
Consider:
n Concept learning algorithm L
n Instances X, target concept c
n Training examples Dc={<x,c(x)>}
n Let L(xi,Dc) denote the classification assigned to

instance xi by L after training on Dc.
Definition:
The inductive bias of L is any minimal set of assertions

B such that for any target concept c and
corresponding training data Dc

(∀xi ∈ X)[B ∧ Dc ∧ xi] |-- L(xi, Dc)
Where A |-- B means that A logically entails B.

Inductive Systems and
Equivalent Deductive Systems

candidate elimination
algorithm

using hypothesis space H

equivalent deductive system

training
examples

new instance

classification of
new instance or
don’t know

theorem prover
training
examples

new instance

classification of
new instance or
don’t know

assertion ”H
contains target
concept”

Three Learners with Different
Biases
n Rote learner: Store examples, and classify x if and

only if it matches a previously observed example.
n No inductive bias

n Version space candidate elimination algorithm.
n Bias: The hypothesis space contains the target

concept.
n Find-S

n Bias: The hypothesis space contains the target
concept and all instances are negative instances
unless the opposite is entailed by its other
knowledge.

Summary
n Concept learning as search through H
n General-to-specific ordering over H
n Version space candidate elimination algorithm
n S and G boundaries characterize learner's

uncertainty
n Learner can generate useful queries
n Inductive leaps possible only if learner is

biased
n Inductive learners can be modelled by

equivalent deductive systems

